В диссертационный совет 24.2.385.01, созданный на базе ФГБОУ ВО «Санкт-Петербургский государственный университет промышленных технологий и дизайна» 191186, Санкт-Петербург, ул. Большая Морская, д. 18

ОТЗЫВ

официального оппонента Хабарова Юрия Германовича на диссертационную работу Кудрявцевой Екатерины Викторовны «Модификация полимерных материалов бикомпонентными наночастицами металлов», предоставленную на соискание ученой степени кандидата химических наук по специальности 2.6.11. — Технология и переработка синтетических и природных полимеров и композитов

Диссертационная работа Кудрявцевой Е.В. посвящена модификации полимерных материалов биметаллическими наночастицами медь-серебро и антимикробных свойств, железо-серебро ДЛЯ придания ИМ бактерицидных и фунгицидных, противовирусных, с сохранением этих федеральном выполнена Работа свойств эксплуатации. при образовательном учреждении государственном бюджетном университет государственный «Санкт-Петербургский образования промышленных технологий и дизайна» на кафедре химических технологий им. проф. А. А. Хархарова.

Актуальность темы диссертационной работы

Волокно- и пленкообразующие полимерные материалы выступают средой для обитания и размножения микроорганизмов, а также передачи вирионов. Существующие антимикробные и противовирусные препараты как правило, действуют только против 5-10 видов штаммов. Поэтому разработка новых антимикробных и противовирусных препаратов комплексного действия является актуальной. Наночастицы серебра обладают более широкими антимикробными свойствами, однако в последние годы были зафиксированы новые штаммы бактерий, резистентные к серебру. Биметаллические наночастицы, например, медь-серебро и железо-серебро, которым посвящена диссертационная работа Кудрявцевой Е.В., оказывают

уничтожающее действие на широкий спектр микроорганизмов, в том числе резистентных к серебру. Актуальность результатов диссертационного исследования обусловлена широким спектром применения разработанного способа модификации полимерных материалов путем применения биметаллических наночастиц металлов для придания противомикробной активности. Такие материалы можно применять как в производстве медицинского текстиля, так и повседневной одежды, а также для производства антимикробной биоразлагаемой упаковки.

Содержание диссертационной работы Кудрявцевой Е.В. отвечает основным направлениям государственной программы «Приоритет 2030».

Научная новизна, теоретическая и практическая значимость результатов диссертационной работы.

Теоретическая значимость работы заключается в том, что автором в области химии полимерных материалов определены особенности синтеза биметаллических наночастиц в растворах с использованием полимерных стабилизаторов, предложен и научно обоснован механизм образования и фиксации наночастиц в субстратах на основе целлюлозы, полипептидов, полиамидов, полиэфиров.

В отношении научной новизны исследования необходимо выделить следующие основные положения:

- во-первых, разработан способ получения стабильных коллоидных растворов, содержащих биметаллические наночастицы, путем восстановления ионов металлов из растворов их солей электронодонорными функциональными группами полимерного стабилизатора и за счет разности окислительных потенциалов пар металлов;
- во-вторых, разработан способ модификации полимерных материалов натурального и химического происхождения биметаллическими наночастицами на поверхности и непосредственно в структуре полимера путем восстановления электронодонорными функциональными группами полимера и за счет разности окислительных потенциалов пар металлов;
- в-третьих, предложен возможный механизм образования и фиксации биметаллических наночастиц Cu-Ag и Fe-Ag в волокнистых и пленочных материалах на основе целлюлозы, полипептидов, полиамидов, полиэфиров.

Таким образом, полученные результаты диссертационного исследования имеют важное значение и представляют собой основу для создания современных антимикробных волокнистых и пленочных материалов.

Практическая значимость результатов диссертационной работы Кудрявцевой Е.В. подтверждена положительными результатами опытнопроизводственных испытаний и заключается в разработке способа и определении наиболее благоприятных условий синтеза биметаллических наночастиц в растворах и модификации полимерных материалов, обладающих высоким антимикробным и противовирусным действием.

Содержание диссертационной работы

Диссертационная работа состоит из введения, анализа отечественной и зарубежной научно-технической литературы, методологической, экспериментальной и технологической частей, основных выводов. Работа изложена на 228 страницах и состоит из четырех глав и четырех приложений. Список литературных источников составляет 156 наименований. Текст диссертации изложен логично и грамотно, на высоком научном уровне. Содержание работы полностью соответствует поставленным целям и задачам.

Во введении, дано обоснование актуальности диссертационного исследования, сформулированы цели и задачи, основные положения научной новизны, теоретическая и практическая значимость работы, приведена информация об объектах и методах экспериментального исследования. Дана оценка достоверности полученных результатов, подтвержденной их апробацией на конференциях соответствующего профиля и публикациями в рейтинговых журналах. Представлены сведения о структуре и объеме диссертации.

Первая глава является обзором научно-технической литературы по теме диссертации. Автором достаточно подробно излагаются современные представления об антимикробных свойствах наночастиц металлов, об их применении и способах их получения в растворах и нанесения на полимерные материалы с целью модификации их поверхности. Дана оценка современных разработок в области создания антимикробных полимерных материалов. Рассмотрены механизмы синтеза наноразмерных частиц металлов в растворах и их закрепления на различных субстратах. Проведенный анализ научной литературы позволил сформулировать задачи и определить актуальные направления исследования.

Вторая глава посвящена описанию характеристики исследуемых полимерных материалов и методов диссертационного исследования с использованием современной приборной техники: спектрофотометрия и спектроколориметрия, ИК-Фурье и КР-спектроскопия, энергодисперсионная рентгеновская спектроскопия И рентгеновское рентгеноструктурный анализ. состава, картирование элементного

Модифицированные образцы были исследованы на бактерицидное, фунгицидное, вирулицидное действие, сохранность свойств в процессах стирки и цитотоксичность. Использованные автором физико-химические и аналитические методы соответствуют требованиям стандартов и нормативов, обеспечены современной приборной базой и позволяют получать воспроизводимые и достоверные результаты.

В третьей главе (экспериментальной части диссертации) приведены результаты исследований. Раздел 3.1 посвящен получению коллоидных растворов моно- и биметаллических наночастиц меди и серебра с использованием полимерных стабилизаторов. Получены стабильные коллоидные растворы, сохраняющие агрегативную устойчивость в течение 24 мес. Наночастицы имеют сферическую форму и размеры преимущественно 1,6–2,3 нм.

Раздел 3.2 посвящен получению биметаллических наночастиц металлов на поверхности и непосредственно в структуре полимерных материалов на основе целлюлозы, полипептидов, полиамидов, полиэфиров, исследованию их физико-механических и химических свойств, а также антимикробного и противовирусного действия. Автором установлены особенности структуры биметаллических наночастиц Cu-Ag: оболочка состоит из серебра(0) и ядро – из меди. Предложен механизм образования и фиксации биметаллических наночастиц медь-серебро на поверхности и в структуре полимерных материалов за счет образования химических связей в дополнение к физическим, при взаимодействии катионов металлов с функциональными группами субстрата (-COOH, -OH, -NH₂, -CO-NH-, -S-S-). Установлено широкое антимикробное действие, противовирусные свойства и отсутствие цитотоксичности модифицированных полимерных материалов. Важным является и то, что получение биметаллических наночастиц значительно удешевляет процесс за счет замены части соли серебра на соль меди или железа, причем такое решение привело к синергетического эффекта в отношении антимикробного получению модифицированных субстратов. Придание результате действия модификации окраски полимерным материалам в некоторых случаях позволяет отказаться от стадии крашения, что положительно скажется на сохранности окружающей среды за счет снижения загрязнения сточных вод.

В четвертой главе предложено оборудование для модификации полимерных материалов биметаллическими наночастицами медь-серебро, а также способ регенерации рабочих растворов. Предлагаемое оборудование используется в производстве для обработки волокнистых материалов периодическим способом. Для производства целлофановой пленки автор

предлагает включить операцию модификации в производственную линию. Согласно результатам диссертационного исследования, в процессе модификации полимерных материалов происходит практическим полная конверсия ионов металлов в атомарную форму (96–99 %) и содержание ионов в остаточной ванне находится в пределах, не превышающих ПДК по нормативам СанПиН 2.1.4.1074-01 «Вода питьевая». Для более полной очистки сточных вод предлагается использование ионно-обменных фильтров.

Общая оценка диссертационной работы

Диссертационная работа Кудрявцевой Е.В. «Модификация полимерных материалов биметаллических наночастицами металлов» представляет собой самостоятельный научно-технологический труд в области химической технологии полимерных материалов, направленный на создание антимикробных и противовирусных материалов комплексного действия посредством модификации их биметаллическими наночастицами медьсеребро или железо-серебро.

Структура, объем, изложение и оформление диссертационной работы соответствует существующим нормативным требованиям. Автором диссертационной работы выполнен значительный объем экспериментальных исследований с использованием современных методов исследования и приборной техники. Научные положения, выводы и заключения, сформулированные в диссертации Кудрявцевой Е.В., обоснованы и согласуются с общими положениями теории полимеров, взглядами отечественных и зарубежных специалистов.

Достоверность, новизна и корректность полученных в диссертационной работе результатов подтверждается полученным патентом РФ на изобретение, публикацией 19 научных статей, в том числе 4- в изданиях, входящих в международную базу данных Scopus, и 9- в изданиях, рекомендованных перечнем ВАК РФ, а также апробацией на международных и всероссийских конференциях с публикацией 12 тезисов докладов.

Текст автореферата в полной мере отражает основное содержание диссертационной работы.

Тема, цель и содержание работы соответствуют паспорту специальности 2.6.11. «Технология и переработка синтетических и природных полимеров и композитов» в части п. 2 «Полимерные материалы и изделия: ...исследования в направлении прогнозирования состав-свойства,... последующая обработка с целью придания специальных свойств; процессы и технологии модификации;...», п. 4 «Физические, химико-физические и

биотехнологические методы модификации синтетических и природных полимеров...», п. 6 «Полимерное материаловедение;... разработка принципов и условий направленного и контролируемого регулирования состава и структуры синтетических и природных полимерных материалов для обеспечения заданных технологических и эксплуатационных свойств...».

Вопросы и замечания по диссертационной работе

- 1. В первой главе автор сосредоточился на использовании наночастиц металлов и их оксидов для придания антимикробных свойств полимерным материалам, но не указал другие классы биоцидных агентов, используемых для этих целей.
- 2. В работе наблюдается некоторое количество технических ошибок в структурировании предложений, например:

В тексте диссертации автор использует написание названия иода как йод. Такое написание является бытовым и аптечным. По правилам ИЮПАК правильное название иода именно через букву «и», а в формулах через «I», а не через «J» (см. Химическая энциклопедия. Т.2. Стр. 251). Производные от слова иод также пишутся через «и».

Почему-то в таблицах размерность количества реагентов указана как мг/мл.

Уравнение реакции на стр. 58 приведено с опибкой.

Формула (3.7) написана с ошибкой (пятивалентный углерод).

В тексте диссертации автор использует обозначение синтезированных продуктов то, как двухкомпонентные, то, как биметаллические. По мнению оппонента второе название предпочтительнее.

- 3. Большая часть литературных источников зарубежные. В России также проводятся исследования в области наноразмерных биметаллических структур, например, Овчаров М.Л., 2014; Лернер М.И., 2018; Bakina O.V., 2021; Непша Н.И., 2022; Курбаков А.И., 2022; Шестеркина А.А., 2020; Бакина О.В., 2020; Ложкомоев А.С., 2018 и др.
- 4. Не отражены антибактериальные свойства полученных коллоидных растворов наночастиц.
- 5. Можно ли применять полученные коллоидные растворы для поверхностной обработки полимерных материалов или, например, древесины, для придания им устойчивости к действию микробов?
- 6. На стр. 125 автором правильно приводятся функциональные группы, встречающиеся шерсти и шелке. Однако сомнительным представляется утверждение о том, все они выступают в качестве восстановителей, т.е. способны окисляться при синтезе металлических наночастиц. Из органической химии известно, что карбоновые кислоты и амиды устойчивы к

окислению. Окисление алканкарбоновых кислот происходит в том случае, если в радикале имеется третичный атом углерода.

7. Для объяснения химизма образования биметаллических наночастиц предположено, что первоначально образуются наночастицы меди, которые в дальнейшем покрываются образующимися при восстановлении атомами серебра. Если оба вида катионов присутствуют в реакционной среде, то можно предположить, что редокс превращения могут проходить не только консекутивно, но и а параллельно, тем более что окислительный потенциал у пары $\mathrm{Ag}^+\!/\mathrm{Ag}^0$ (+0,799 B) значительно больше, чем у пары $\mathrm{Cu}^{2+}\!/\mathrm{Cu}^0$ (+0,345 B). Кроме того, необходимо было бы учесть, что образование меди(0) является двухэлектронным, а образование серебра(0) — одноэлектронный процесс. То есть теоретически имеется возможность образования наночастиц $\mathrm{Cu}_2\mathrm{O}$, плохо растворимого вещества, окрашенного в красный цвет.

Представленные вопросы и сделанные замечания не снижают научной и практической значимости диссертационной работы и не изменяют ее общую положительную оценку.

Заключение

Диссертационная работа Кудрявцевой Екатерины Викторовны «Модификация полимерных материалов бикомпонентными наночастицами металлов» является законченным научным исследованием, результаты которого имеют теоретическое и практическое значение в области химической технологии полимерных материалов и направлены на создание инновационных антимикробных и противовирусных материалов с широким спектром действия.

По актуальности, научной новизне, объему и обоснованности научных результатов отвечает всем требованиям ВАК Минобрнауки России, предъявляемым к диссертациям на соискание ученой степени кандидата наук. Работа соответствует требованиям пп. 9-14 «Положения о присуждении ученых степеней», утвержденным постановлением Правительства РФ № 842 от 24 сентября 2013 г. (с изменениями и дополнениями), является законченной научно-квалификационной работой, в которой изложены новые научно-обоснованные технологические решения и разработки по модификации полимерных материалов биметаллическими наночастицами металлов и использованию их в качестве антимикробных волокнистых и пленочных материалов, имеющие существенное значение для развития страны.

Автор диссертационной работы, Кудрявцева Екатерина Викторовна, заслуживает присуждения ученой степени кандидата химических наук по

специальности 2.6.11. – Технология и переработка синтетических и природных полимеров и композитов.

Официальный оппонент
Хабаров Юрий Германович,
доктор химических наук, профессор,
профессор кафедры целлюлозно-бумажных
и лесохимических производств высшей
школы естественных наук и технологий
ФГАОУ ВО «Северный (Арктический)
федеральный университет имени М.В. Ломоносова»

«22» октября 2024 г.

163002, г. Архангельск, набережная Северной Двины, 17

Телефон / факс: (+78182) 21-89-10; (+78182) 21-61-43

E-mail: khabarov.yu@mail.ru